Bright off-axis directional emission with plasmonic corrugations.
نویسندگان
چکیده
In this work, a new plasmonic bulls-eye structure is introduced to efficiently harvest the emitted light from diamond nitrogen vacancy (NV) centers. We show that the presence of a simple metal sub-layer underneath of a conventional bulls-eye antenna, separated by a dielectric layer, results in the spontaneous emission enhancement and increment in out-coupled light intensity. High Purcell factor is accessible in such a structure, which consequently boosts efficiency of the radiated light intensity from the structure. The structure shows considerable enhancement in far-field intensity, about three times higher than that of a one-side corrugated (conventional) optimized structure. In addition, we study for the first time asymmetric structures to steer emitted beams in two-axis. Our results show that spatial off-axial steering over a cone is approachable by introducing optimal asymmetries to grooves and ridges of the structure. The steered light retains a level of intensity even higher than conventional symmetric structures. A high value of directivity of 16 for off-axis steering is reported.
منابع مشابه
Polarization Multiplexing of Fluorescent Emission Using Multiresonant Plasmonic Antennas
Combining the ability to localize electromagnetic fields at the nanoscale with a directional response, plasmonic antennas offer an effective strategy to shape the far-field pattern of coupled emitters. Here, we introduce a family of directional multiresonant antennas that allows for polarization-resolved spectral identification of fluorescent emission. The geometry consists of a central apertur...
متن کاملDirectional sideward emission from luminescent plasmonic nanostructures.
Periodic arrays of metallic nanoparticles can be used to enhance the emission of light in certain directions. We fabricated hexagonal arrays of aluminium nanoparticles combined with thin layers of luminescent material and optimized period (275 nm) and thickness (1500 nm) to obtain sideward directional emission into glass for a wavelength band around 620 nm. The key physics is that the luminesce...
متن کاملUltrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonst...
متن کاملDeveloping a Nanowriter System: Simulation and Experimental Set-up of a Plasmonic-based Lens Design
The aim of this article is to introduce a nanowriter system that could lead to a sub-micrometer spot size using a visible light source under ambient conditions. The key component of the system is a focusing optical head, which incorporates a plasmonic-based lens instead of a conventional lens. Based on knowledge of the physical origin of extraordinary transmission and directional beaming, we th...
متن کاملDirectional light emission from propagating surface plasmons of silver nanowires.
Thin metallic nanowires are highly promising candidates for plasmonic waveguides in photonic and electronic devices. We have observed that light from the end of a silver nanowire, following excitation of plasmons at the other end of the wire, is emitted in a cone of angles peaking at nominally 45-60 degrees from the nanowire axis, with virtually no light emitted along the direction of the nanow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 25 25 شماره
صفحات -
تاریخ انتشار 2017